WELCOME Open Days April 2013

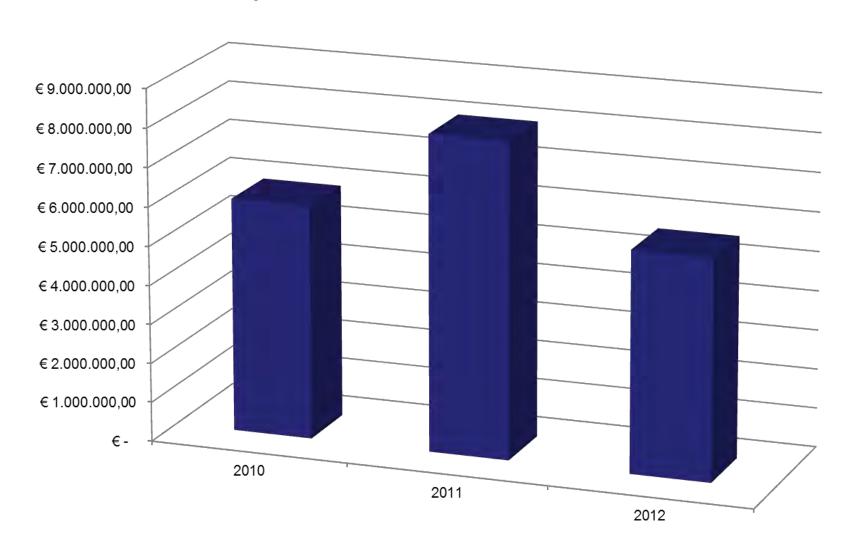
The Galletti Family have

over 100 years history in the

mechanical manufacturing industry &

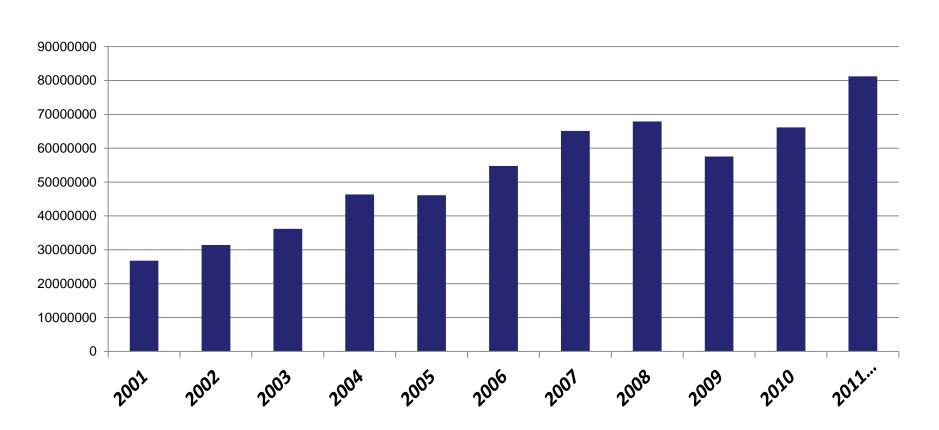
over 50 years history in the heating

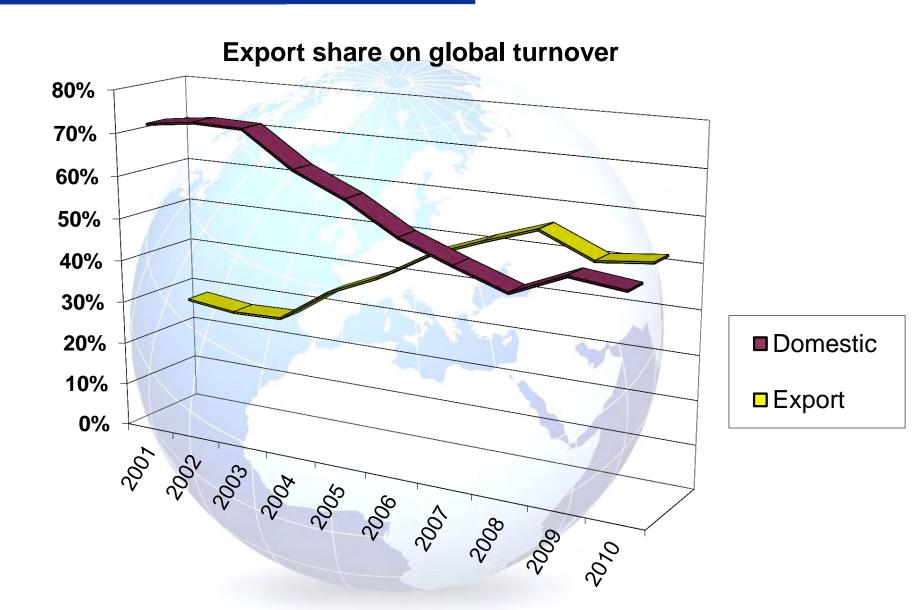
and air conditioning business


Galletti together with Columbus is over **20 years presence** in the Hungarian Market..

Galletti Group now consists of 6
manufacturing plants totalling over
60.000m² and has over 460
employees

Galletti Group Investment 2010-2012 – Total € 19.5 Mln


GALLETTI TODAY


Galletti S.p.A

24.000m² one of the biggest producer of fan coils & terminal units in Europe. Production also of chillers, heat pumps, polyvalent units, unit heaters for residential, commercial & industrial purposes

Galletti Group is one of the fastest growing groups in the HVAC field..

Product Development 2012/2013

New Developments 2013

- Extension of the LSE range to 1200kW
- Extension of the LEW range to 650kW
- New LCP multifunction heat pumps
- New HiWarm multifunction heat pumps
- New range of inverter units: MPI-DC
- New fan coil configuration: Estro 1.2
- New cassette IWC with innovative 4x2 valves for 4 pipe system
- MPE Series extended to 76kW
- New buffer tanks in collaboration with Cordivari

AIR COOLED CHILLERS and HEAT PUMPS

5 lines of chillers and heat pumps from 4 to 1200 kW

WATER COOLED CHILLERS and HEAT PUMPS

Water-water chillers and heat pumps

....2013 the range has been extended to 650kW!

Full range of Multifunction HEAT PUMPS

Packaged Air/water:

4-350 kW

Water/water: 40-420 kW

Split type Air/water:

1-33 kW

GALLETTI news – ESTRO 1.2 NEW VERSION

ESTRO 1.2

22 sizes 9 constructive versions 3 different motors

Estro 1.2: an improved and competitive proposal

- The <u>widest range</u> in sizes and models on the market!
- Featuring the new generation of <u>inverters</u> motors
- A complete range of <u>sanified</u> fan coil units

Nuovo sistema Sanificazione Aria

New Purifying Air Innovation

Estro 1.2: the new range compared with main competitors

										G/	ALLE	:TTI	Estr	o 1.	2										
ESTRO		1	2	3	4		44	5	6	64	7		74		8	9	84	94	95	10	104		11	114	12
Cooling		1150	1540	1740	1960		2240	2420	2930	3290	3510		4560		4330	4770	4970	5400	5260	6710	7380		8020	8980	10950
										AE	RM	EC	FCX s	serie	es										
FCX	17		22	24		32			34	42			50		44	54	62			64	82	102		84	
Cooling	1000		1500	1730		2210			2800	3400			4190		4450	4970	4860			6350	7420	7620		8600	
										SAE	BIAI	NA	CRC	seri	es										
CRC	13	14	23	24			33	34	43	44		53	54	63		64	73	74	83	84	93	94			
Cooling	1030	1230	1560	1810			2390	2570	2870	3120		3640	4090	4090		4790	5110	5580	5820	6470	6740	7600			

Cooling capacity 1 – 11 kW

Estro 1.2: an improved and competitive proposal

Heat exchangers with 2 / 3 / 4 rows

- 3 different motors
 - Standard 3 speeds
 - 6 speeds
 - **BLDC** inverter
- 9 constructive versions

...for a total amount of more than 350 configurations

Estro 1.2: exclusive features

Wide range: 20 models / 9 versions/ 3-speed electric motor

Higher quality EC motor: EMB range

Control of fan coil unit based on temperature and humidity

Purification of terminal unit and environment: BIOXIGEN technology

ESTRO 1.2: the versions with cabinet

FL/FLI:

- wall installation
- vertical air outlet
- bottom side inlet

FP/FPI:

- ceiling installation
- front side outlet
- rear side inlet

FA/FAI:

- wall installation, can be recessed in niche
- inclined air outlet
- bottom side inlet

FU/FUI:

- Floor/ceiling installation
- Vertical air outlet (in vertical installation)
- Front side inlet (in vertical installation)

CL/CLI:

- wall installation, color of the cabinet RAL 9001
- vertical air outlet
- bottom side inlet

FB/FBI:

- Floor/ceiling installation
- Low body only 438 mm height
- Vertical air outlet (in vertical installation)
- Front side inlet (in vertical installation)

ESTRO 1.2: the versions for recessed installation

FC/FCI:

- Wall/ceiling installation
- front side outlet (in horizontal installation)
- Intake on rear side (in horizontal installation)

FF/FFI:

- Floor/ceiling installation
- Vertical air outlet
- Front side inlet

FBC/FBCI:

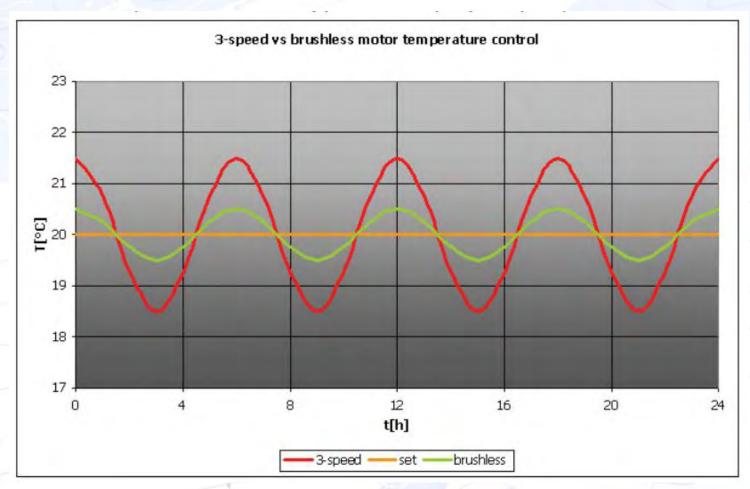
- Floor/ceiling installation
- Low body only 413 mm height
- Vertical air outlet
- Front side inlet

Estro 1.2: BLDC technology

The permanent magnet electric motor (brushless), controlled by an inverter, allows the continuous variation of air flow rate

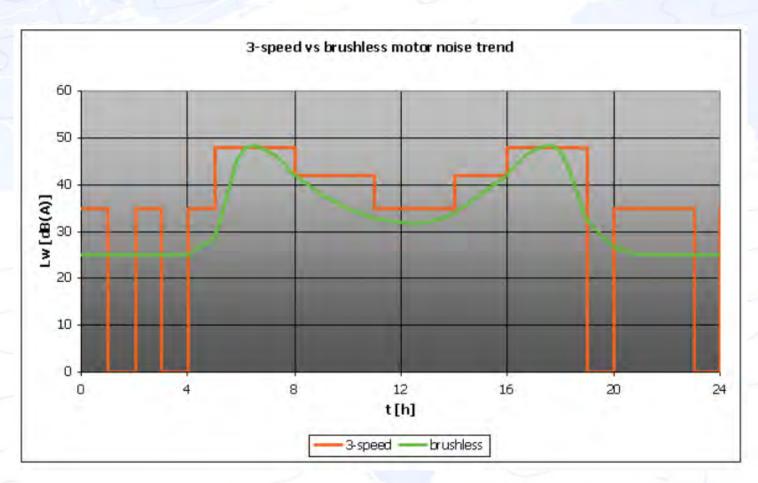
Estro 1.2: BLDC technology pros

Up to 30% reduction of the input power compared with traditional on/off motors



Corresponding reduction in CO₂ emissions!

Estro 1.2: BLDC technology pros


BLDC Inverter technology continuously adjusts the air flow rate to the actual needs of the room by reducing the oscillations of temperature that are typical with capacity steps control.

Estro 1.2: BLDC technology pros

BLDC Inverter technology allow the reduction of the average sound emissions compared with on/off motors

Estro 1.2: EBM Proposal

New EBM BLDC motor:

- Top of the range
- Optimized noise level
- Estro 1.2 will be part of Greentech products

INNOVATIVE IONIZATION SYSTEM FOR TERMINAL UNITS

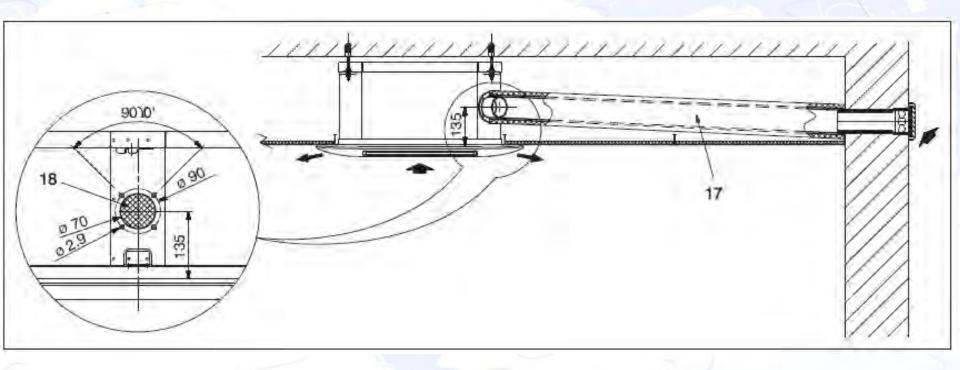
Estro 1.2: BIOXIGEN

- The main component of the Bioxigen® system is a condenser ("ionization tube"): it consists of a quartz cylinder and special metal meshes powered by single-phase AC at a low rate of energy consumption *.
- The condenser generates a flow of small negative oxygen ions through an oscillating electric field. The negative oxygen ions aggregate in "cluster" endowed with high oxidizing power.
- These cluster neutralize germs and bacteria with a redox process keeping the proper ionic proportion.

GALLETTI news

The new IWC hydronic cassette

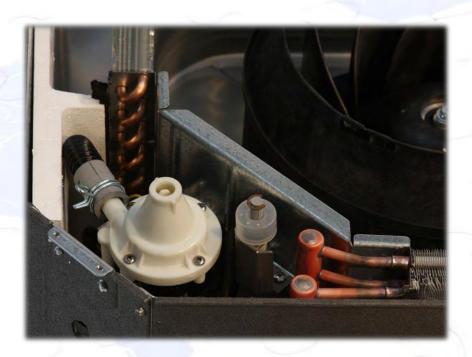
- The design and the components are completely MADE- in-ITALY
- High-quality manufacturing : top of the category even for reduced noise levels
- INVERTER fans motor


The new IWC hydronic cassette

- 6 models with 1 coil for 2- and 4-pipe systems, available with wire or infrared controller for a cooling capacity range 2-9 kW
- 2 models with 2 coils for 4-pipe systems
- 4-speed motors as standard
- 60x60 modularity up to 5kW cooling capacity
- Condensate drainage pump with dual level float switch
- Set up for external air inlet and for channeling air out of the unit

IWC: constructive features

The bearing structure is made of galvanized steel sheet, internally and externally coated so as to ensure the thermal and sound insulation of the unit. The casing accommodates the main components of the unit (heat exchanger, fan motor assembly and condensate drainage pump) and it is set up for external air intake and for air distribution to adjacent premises.


IWC: the fans

Centrifugal fan with backward curved blades, dynamically and statically balanced, directly connected to the electric motor, operating at <u>4 speeds</u> so as to ensure adequate sound power level and energy saving.

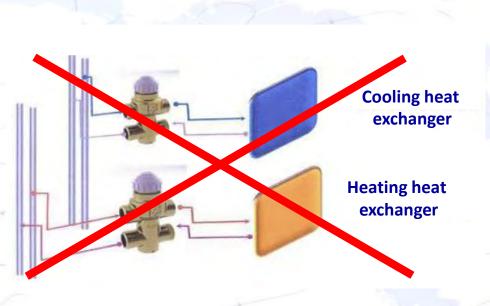
IWC: drainage pump

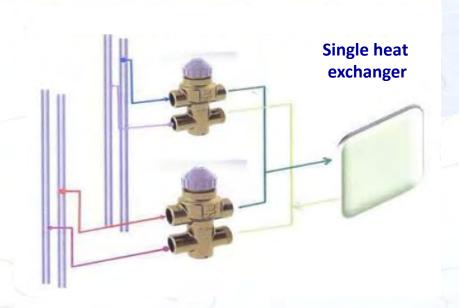
Condensate drainage pump with 250 mm available head, equipped with a dual level float switch for the monitoring of the condensate level in the drip tray and for the management of the alarm system. When the condensate drainage pump is running (triggered by the float switch, first level) the ventilation is lower so as to facilitate the drainage of the condensate from the heat exchanger fins.

IWC: constructive features

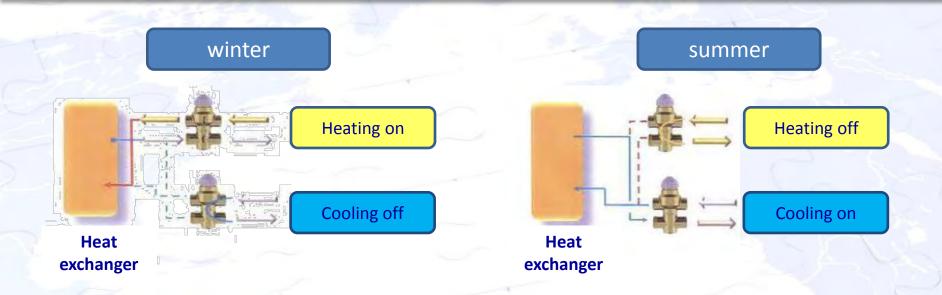
The electrical components placed in an external box are electric board for the management of the unit and relay for the operation of the drainage pump. The box is located next to the water piping connections so as to reduce the space for installation.

IWC: accessories


ACCESSORIES COUPLING TABLE

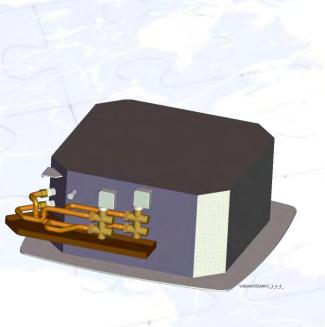

ACCESSORIES AVAILABLE	1 BTR model, cable control	1 BTR model, IR remote control	2 BTR model, cable control
LED 503 control panel	Х		X
BASE MYCOMFORT control panel	X		X
MEDIUM MYCOMFORT control panel	X		X
LARGE MYCOMFORT control panel	Х		X
Sensor for measuring water temperature	Х		X
2-way valve kit with 230V ON/OFF actuator	X	X	X
2-way valve kit with 24V ON/OFF actuator	X	X	X
2-way valve kit with modulating actuator	X	X	X
3-way valve kit/4 connections with ON/OFF actuator	X	X	X
3-way valve kit/4 connections with 24V ON/OFF actuator	X	X	X
3-way valve kit/4 connections with modulating actuator (24V, 0-10V signal)	Х	X	X
4X2 3-way valve kit/4 connections with 24V ON/OFF actuator	X	X	
4X2 3-way valve kit/4 connections with 230V ON/OFF actuator	X	X	

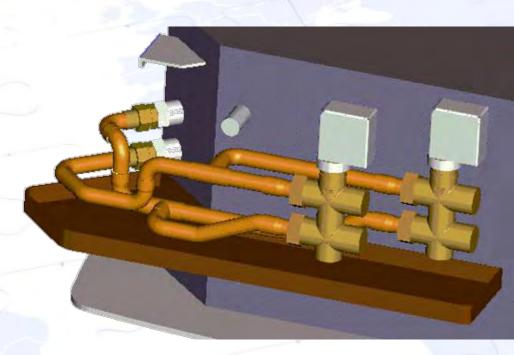
IWC: 4x2 valve


Innovative concept for 4 pipes systems

The 4X2 valve kit has been designed to use terminals with one heat exchanger in four-pipe fan coil units with separate "heating" and "cooling" pipes.

IWC: 4x2 valve




 Significant performance increase in winter thanks to the possibility to use lower water temperature with consequent energy saving!

Lower cost of the unit + reduced installation costs

IWC: 4x2 valve

The control panel must be able to manage the response time of electrothermal actuators -> 4x2 valve needs:

- LED 503
- MYCOMFORT all

IWC: BIOXIGEN

The first «sanified» cassette on the market

INNOVATIVE patented DEIONIZATION SYSTEM FOR INDOOR UNITS

AIR-WATER: MPE – PERFORMA range

AIR-WATER CHILLERS AND HEAT PUMPS: MPE

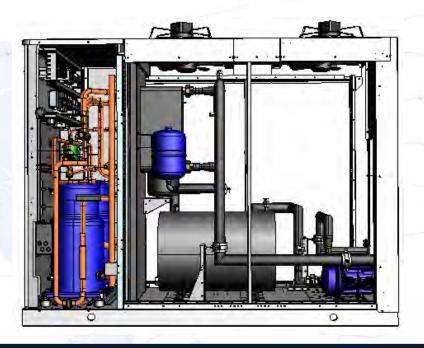
23 cooling only and heat pump models, cooling from 4 to 75 kW and heating from 5 to 82 kW

➤ MPE -> Performa

- ➤ Chillers and heat pumps for comfort applications where there is a demand for high efficiency and an extended working range
- Among the best of current market offerings in terms of energy efficiency, functionality and price
- Eligibility for tax benefits (5 heat pump models)

MPE: product plus

23 cooling only and heat pump models, cooling from 4 to 75 kW and heating from 5 to 82 kW



- SUMMERTIME OPERATION WITH HIGH AIR TEMPERATURES (up to 51°c)
- HIGH PARTIAL LOAD EFFICIENCY (tandem configuration)
- EXTREMELY QUIET OPERATION
- SLIDING SETPOINT (based on outdoor air temperature)
- SELF-ADAPTIVE DIFFERENTIAL: OPERATION WITH SMALL VOLUMES OF WATER (without storage reservoir)
- SMART DEFROST SYSTEM (with advanced microprocessor)

MPE: plus

- Frame: painted galvanized metal sheets (RAL9002) → Resistant to corrosion
- Compressors compartment is completely closed and accessible from 3 sides
- Hydronic kit: high head pressure, mixture of water and glycole (max 35%)

MPE: components

- > BRAZE-WELDED STAINLESS STEEL HEAT EXCHANGERS
- SCROLL COMPRESSORS (SINGLE COMPRESSOR OR TANDEM)
- ➤ A HYDRONIC UNIT CAN BE INCORPORATED IN ALL MODELS WITHOUT CHANGING THE OVERALL DIMENSIONS (single or double pump stainless steel with «OR» execution)
- ➤ ELECTRIC FAN WITH 6 or 8 POLE EXTERNAL ROTOR DIRECTLY COUPLED TO AN AXIAL FAN (from 1 to 4 fans)
- MICROPROCESSOR CONTROLLER: μCHILLER2 and pCO XS

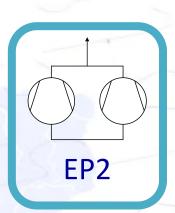
MPE: product code

- 1. Product
- 2. Version:
 - 0. Single compressor
 - T. Tandem
- 3. Size
- 4. Chiller/Reversible Heat Pump (C/H)
- 5. Power supply:

0: 400/3N/50 Hz

M: 230/1/50 HZ

2: 400/3N/50 Hz + circuit brakers


4: 230/1/50 HZ + circuit brakers

MPE T: new extension line

- Extension line (frame 5): MPE tandem
 - Range similar to I° frame LCE
 - Easier configuration (as for MPE)

- MPE T054
- MPE T061
- MPE T069
- MPE T076

lower €/kW

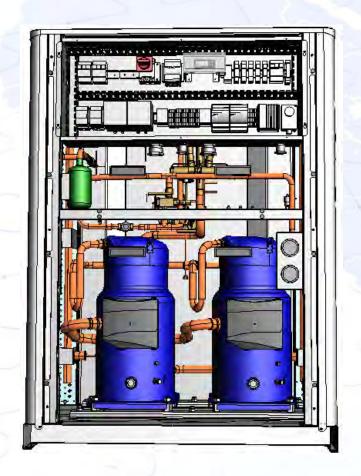
MPE T extension line: performances

- ■Cooling capacity (@ A 35°C/W 12/7): 54,6 ÷ 76,0 kW
- Sound power, Lw = 81 dB(A)
- Effiency ratio:
 - Heating (@ A 7/W 40/45°C): COP = 3,14 ÷ 3,29
 - Cooling (@ A 35°C/W 12/7C): EER = 2,71 ÷ 2,96

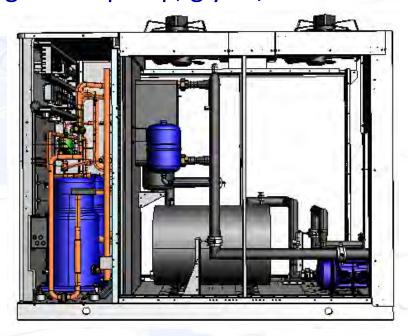
MPE: Range extension

LCE frame 1

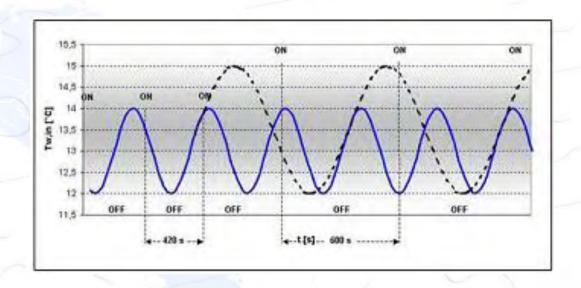
MPE tandem

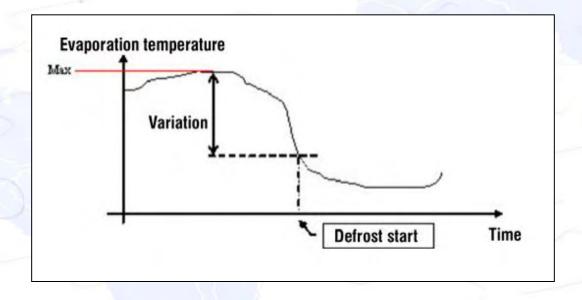

000000000000

Configuration of base version chiller


000000000001

Price List [€]	
€ 17.300	- >- 8,8 %
€ 18.960	li Common de la co
€ 18.200	- - 8,2 % - - - 8,2 % - - 8,2 % -
€ 19.817	
€ 18.500	- 15,8 % -
€ 21.959	
€ 20.500	-13,8%
€ 23.780	•
	€ 17.300 € 18.960 € 18.200 € 19.817 € 18.500 € 21.959 € 20.500


- Dual compressor version: Power partialization as a function of thermal load and water-side differential
- Access to income tax deductions of 55%
- Outdoor installation
- Residential and commercial uses
- Wide operating range


- Structure: In painted, galvanised sheet metal (RAL9002) → Corrosion resistant
- Completely closed compressor compartment, accessible from three sides
- Hydronic kits: High head pump, glycol/water blends (max 35%)

- Auto-adaptive operation: Set Point automatic adjustment as a function of outside temperature:
- \capacito consumption reduction
- →broadening of the operating field
- •Low water content systems also available without buffer tank thanks to the automatic adjustment limiting the # of the compressor startups

 Smart defrost system (with advanced control): it identifies the external exchanger performance deterioration caused by ice formation

MPE: Controls

- Base mchiller 2 control, with modbus protocol, allowing immediate connection to ERGO networks
- Evaporator inlet water T control
- Defrost management (MPE H)
- Fans speed control (optional)
- Dynamic setpoint management as a function of air T
- Connection to serial line RS485 for supervision/tele-assistance

MPE: Controls

Base mchiller 2 - Controlled devices

Compressor

Fans

Cycle inversion valve (MPE H)

Water circulation pump

Antifreeze resistance (optional)

PCO Advanced control

LAN networks

Smart defrost system

MPE: Scroll Danfoss SH compressors

- ↑ η thermodynamic
- Pressure drop reduction
- Oil use at low viscosity → + 5% EER
- Protections against overheating, overcurrent, and overtemperature
- Mounted on anti-vibration devices

MPE: Alfa Laval plate exchangers

- Brazed plates in austenitic stainless steel AISI 316:
 - Low refrigerant charge compared to standard solutions
- Internal corrugation of the plates + Perfect polishing of the plates:
 - High fluid turbulence makes it difficult for filth and limestone to build up on the condenser side.

MPE: FINNED PACK HEAT EXCHANGER

- Special pipes Φ=8 mm
- Hydrophilic treatment of heat pump

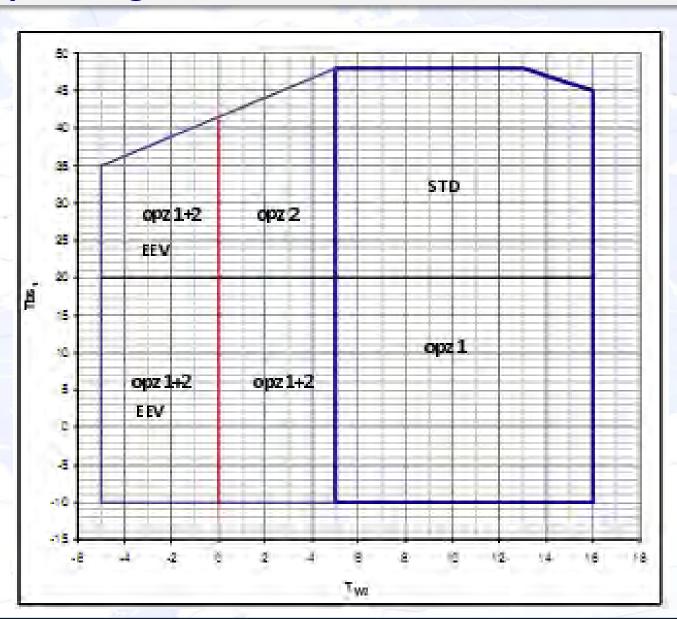
- Reduced internal volume
- Improved reliability at high pressures
- Lower noise
- Reduced defrost time

MPE – Chilling operating limits

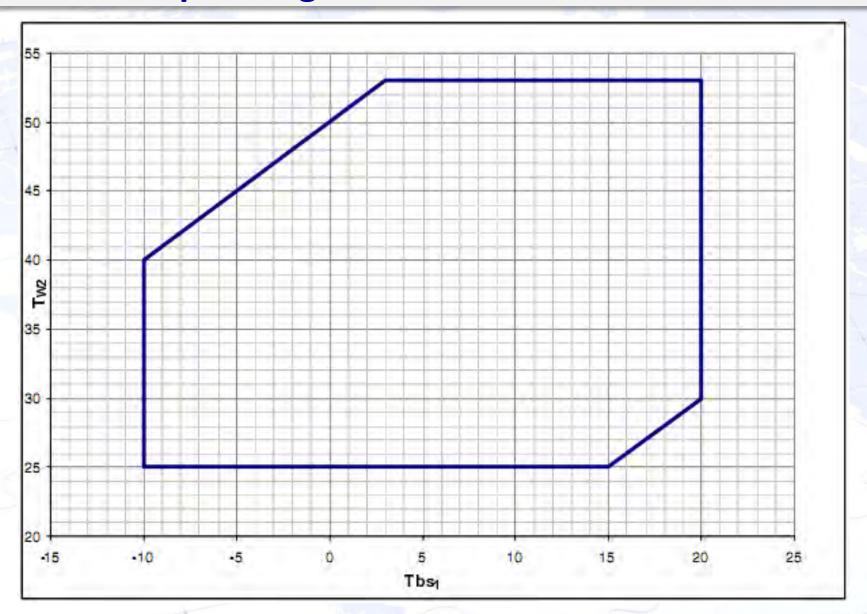
• Opt 1:

Condensation control

• Opt 2:


Glycol + opt. Low T

EEV:


Electronic valve

STD:

Standard

MPE – PDC operating limits

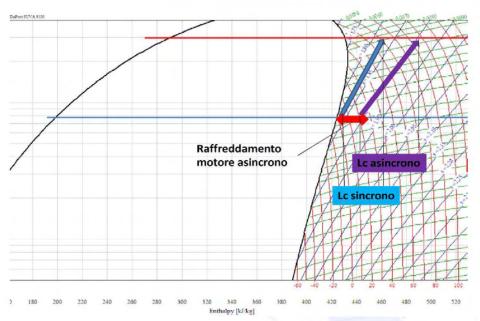
MPI DC: product plus

- ELECTRONIC EXPANSION VALVE AS STANDARD FEATURE TO MAXIMISE EFFICIENCY AT PARTIAL LOADS
- > 3 DIFFERENT "EFFICIENCY PACK" TO REACH HIGH EFFICIENCY @ FULL LOAD AND PARTIAL LOADS
- SOUNDPROOFING WITH 3 DIFFERENT SOLUTIONS
- RESTRAINED DIMENSIONS
- HYDRONIC OPTIONS WITH PUMPS WITH «AND» EXECUTION OR «OR» EXECUTION

GALLETTI news: MPI- DC INVERTER CHILLERS & HEAT PUMPS

MPI DC: main components

- 5 Models 8- 28KW
- BLDC variable speed compressors
- DC Inverter Carel Power Drive
- Inverter EC Pump
- Inverter EC Fans
- Micrprocessor Controller Carel pCO
- Electronic Expansion Valve

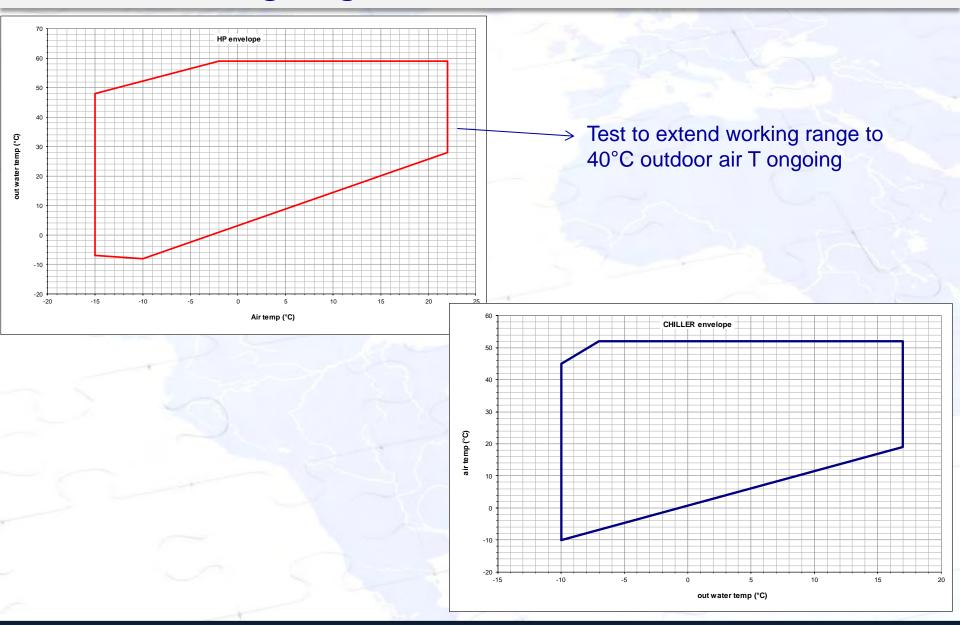


MPI DC: BLDC VARIABLE SPEED COMPRESSORS

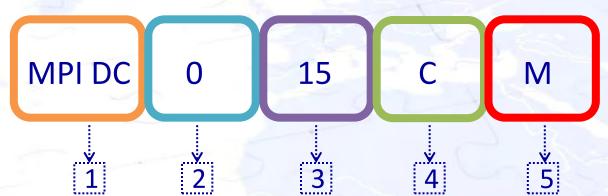
Advantages of synchronous tech. against asynchronous (most popular):

Better heat rjection system (heat generated on stator and not on the rotor): it is therefore possible to cool it down using the discharge gas

For the above reasons this compressor is called "Hot


The compression energy depend upon the suction T: if there is not any furter superheat, the gas compression energy is reduced and you get an higher volumetric efficiency

MPI DC: VARIABLE SPEED COMPRESSORS BLDC



- ✓ Permanent-magnet synchronous motor
- ✓ Reduced motor inertia
- ✓ Small sizes
- ✓ Reduced noise level
- ✓ Absence of losses due to current flow in the rotor and to induction
 → higher partial load efficiency
- ✓ Increased isentropic efficiency of the compression

MPI DC: working range

MPI: product code

- 1. Product
- 2. Only single compressor
- 3. Size
- 4. Chiller/Reversible Heat Pump (C/H)
- 5. Power supply

0: 400/3N/50 Hz

M: 230/1/50 HZ

2: 400/3N/50 Hz + circuit brakers

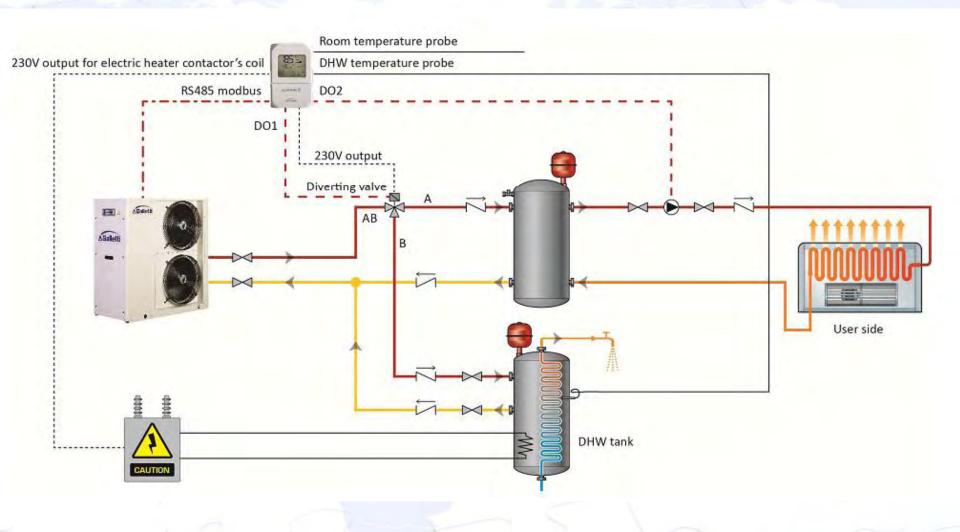
4: 230/1/50 HZ + circuit brakers

MyChiller ACS Remote Control: Main functions

The MyChiller ACS has been designed to manage the MPI DC heat pumps by a serial connection

The Mychiller remote control is connected by a RS485 connection.

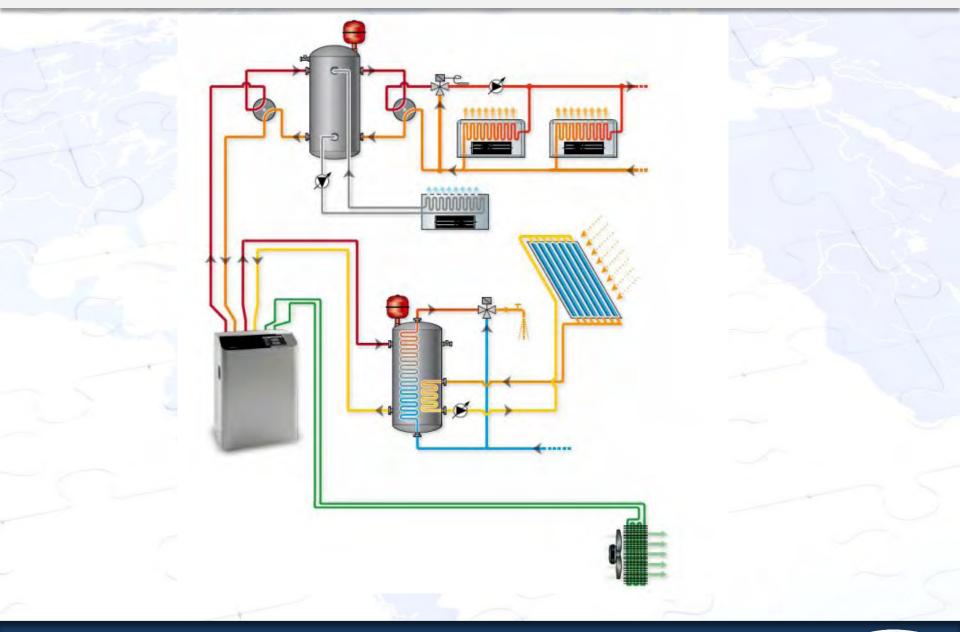
The remote control is able to connect also with ModBus with Carel μ chiller2, μ chiller2 SE, pCO1 e pCOXS controllers.

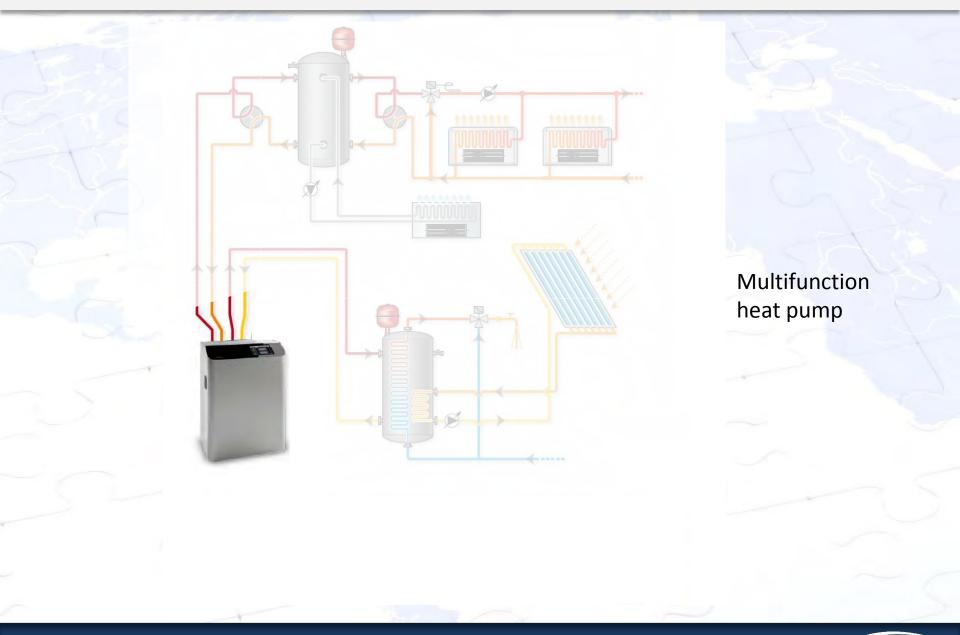


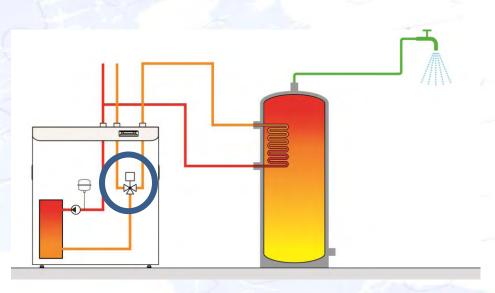
MyChiller ACS: typical installation

MyChiller ACS Remote Control: Main functions

- ON/OFF of the unit.
- Regulation of the setpoint temperature (inlet water temperature).
- Winter/Summer selection mode.
- Visualization and modification of the principal parameters of the unit (differential, minimum and maximum setpoints).
- Visualization of advanced parameters (inlet water temperature, condensation pressure)
- Visualization of the unit alarms
- Management of a DHW buffer tank.
- Volt free contact in order to start/stop the unit
- Volt free contact for remote enabling of the DHW buffer tank
- Management of the deviating 3 way valve by digital output
- Management of the pumps


Multifunction HP with total recovery


4 families air/water and water-water from 6 kW to 420 kW


MULTIFUNCTION PLANTS

MULTIFUNCTION HEAT PUMP

THE SOLUTION WITH A 3-WAYS VALVE

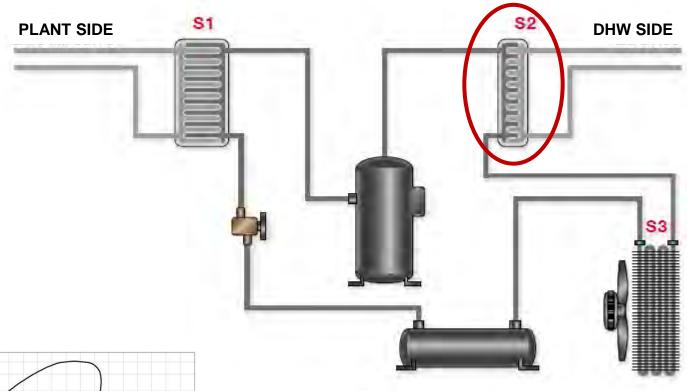
Refrigerant circuit:

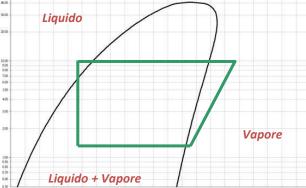
2 heat exchangers

Hydraulic circuit:

- One 3-ways valve (integrated in the unit or outside)
- 1 pump on plant side
- 2 hydraulic circuits not separated

Advantages.


- Easy to construct
- Low cost


Disadvantages:

- During summer it is not able to produce at the same time cool on plant side and DHW: if the unit is working in cooling mode and there is demand for DHW, the unit has to reverse the cycle
- There ins't any kind of heat recovery

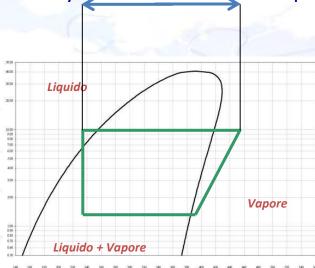
PARTIAL HEAT RECOVERY: a solution with many limits

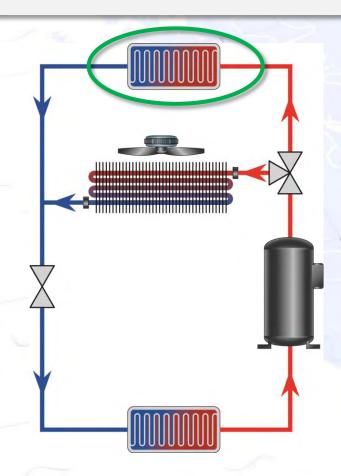
Advantages:

- Partial heat recovery
- Easy to construct
- Costs

Disadvantages:

- It is not able to produce DHW all over the year (only during cooling mode)
- It is not able to produce only DHW


CHILLER WITH TOTAL HEAT RECOVERY


Refrigerant circuit:

- There is an additional heat exchanger (condenser) in parallel with the finned block heat exchanger
- 3-ways valve

Hydraulic circuit:

2 hydraulic circuits not separated

Advantages:

100% heat recovery in cooling mode

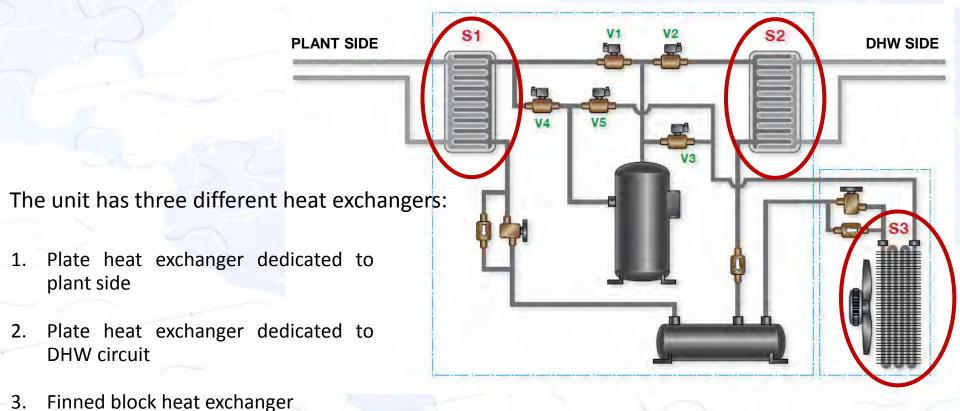
Disadvantages:

- It is not able to produce DHW all over the year (only during cooling mode)
- It is not able to produce only DHW

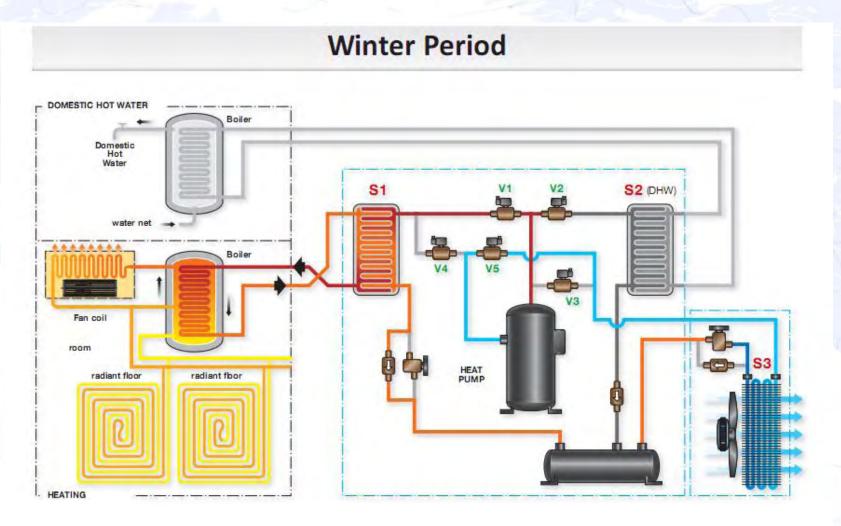
MULTIFUNCTION HP with TOTAL HEAT RECOVERY

Advantages of a multifunction heat pump compared to a standard heat pump:

1. In cooling mode is able at the same time to cool and to produce DHW with total heat recovery (without reversing the cycle)

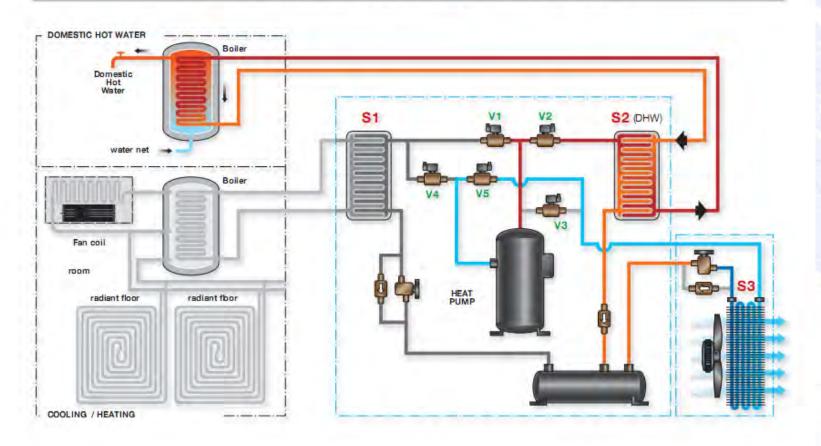

Plus compared to the 3 ways valve solution

2. It is able to produce only DHW

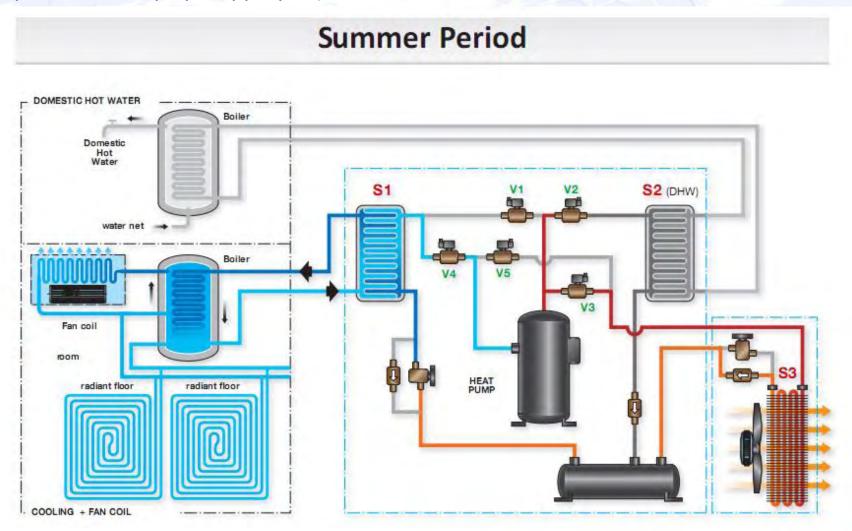


Plus compared to partial/total heat recovery solution

(example of air-water heat pump for 2 pipes system)

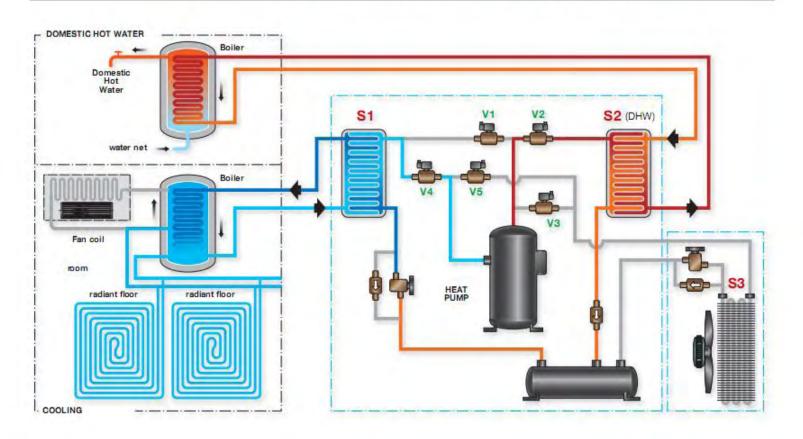


(example of air-water heat pump for 2 pipes system)



(example of air-water heat pump for 2 pipes system)

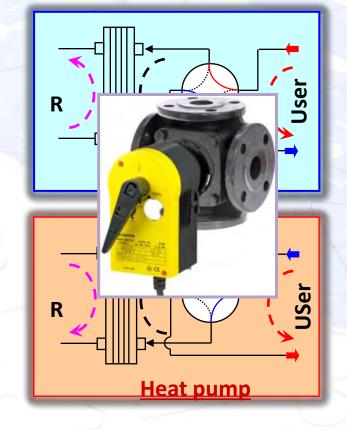
Domestic Hot Water / Mid Season



(example of air-water heat pump for 2 pipes system)

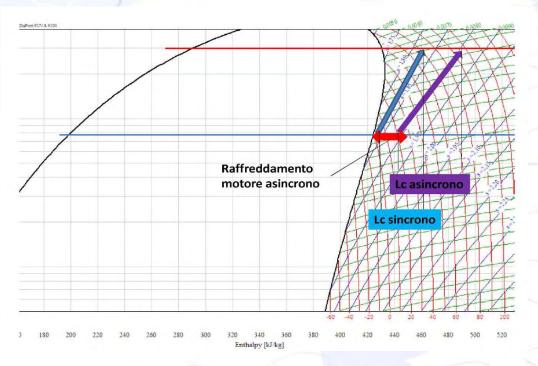
(example of air-water heat pump for 2 pipes system)

Summer Period (total heat recovery)



ADVANCED TECHNOLOGICAL SOLUTIONS ON MULTIFUNCTION HEAT PUMPS

- ✓ Electronic-driven electric expansion valve
- ✓ high efficiency pumping kit
- ✓ Counter flow heat exchange



ADVANCED TECHNOLOGICAL SOLUTIONS ON MULTIFUNCTION HEAT PUMPS

PROS of the BLDC motor on the asynchronous motor:

The heat (coming form the stator only) is better rejected in the BLDC motors, so the compressors can be cooled down with discharge gasses.

- the compression power input depends from the suction gas temperature
- in standard compressors (asynchronous) the suction side gasses are further superheated
- in BLDC motors the suction gasses are cooler → lower compression power input

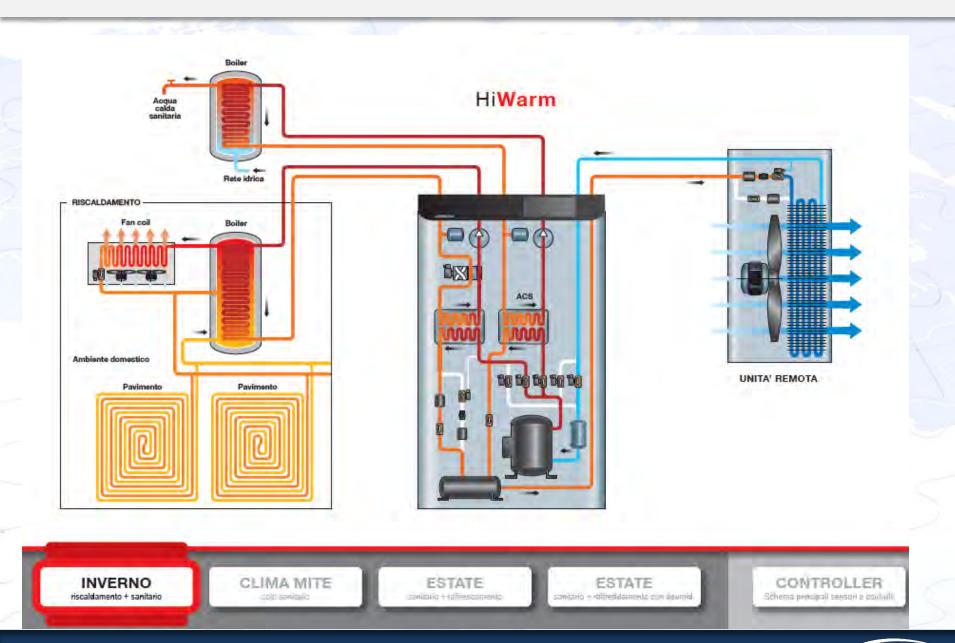
ADVANCED TECHNOLOGICAL SOLUTIONS ON MULTIFUNCTION HEAT PUMPS

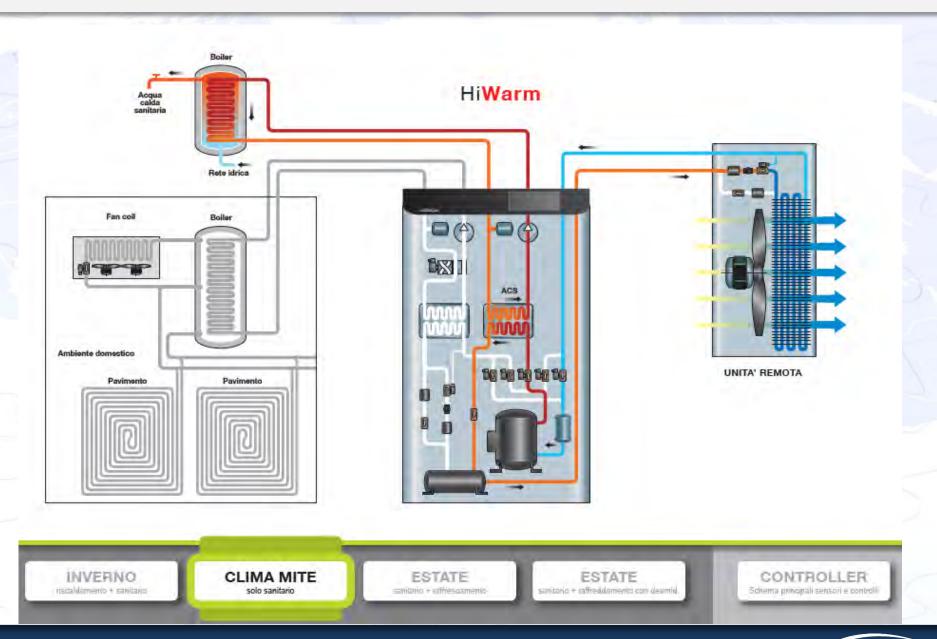
- ✓ Permanent-magnet synchronous motor
- ✓ Reduced motor inertia
- ✓ Small sizes
- ✓ Reduced noise level
- ✓ Absence of losses due to current flow in the rotor and to induction
 → higher partial load efficiency
- ✓ Increased isentropic efficiency of the compression

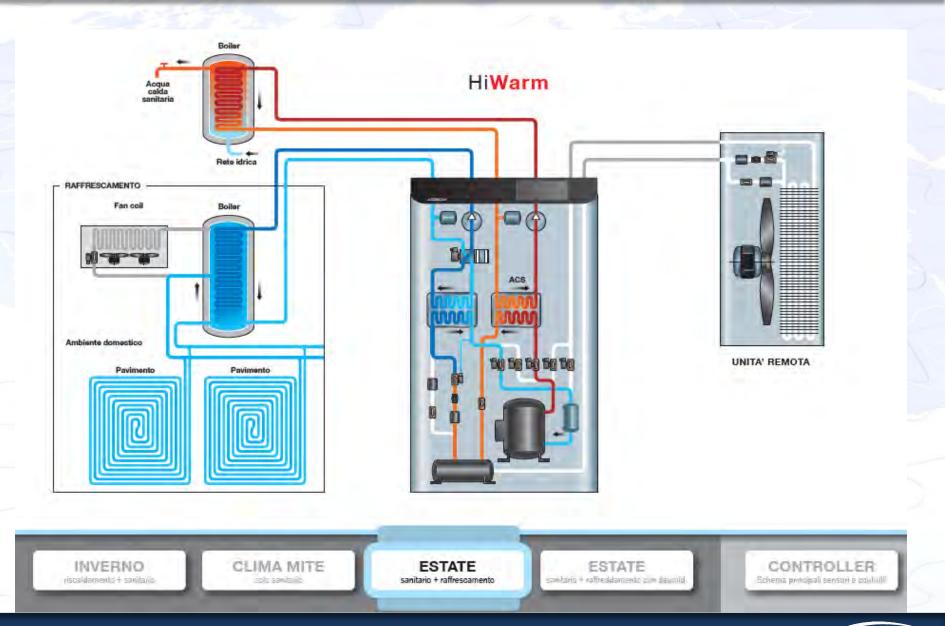
MULTIFUNCTION HP with TOTAL HEAT RECOVERY: HI WARM

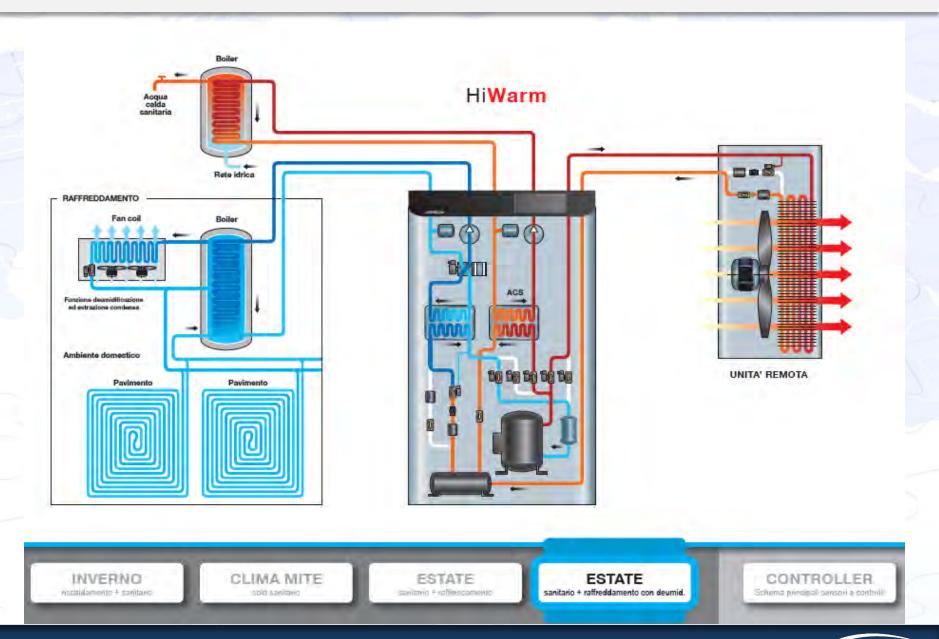
- Splitted unit
- R410A
- BLDC variable speed compressors
- 3 sizes covering the range 1÷34 kW
- Heat-pump mode up to a 60°C (@ 0°C ambient T)
- Minimum ambient T -15°C (@ 55°C supply water T)
- High efficiency pumping kit
- low-noise and light outdoor unit (can be ducted)
- innovative design
- integrated control of building's electrical devices

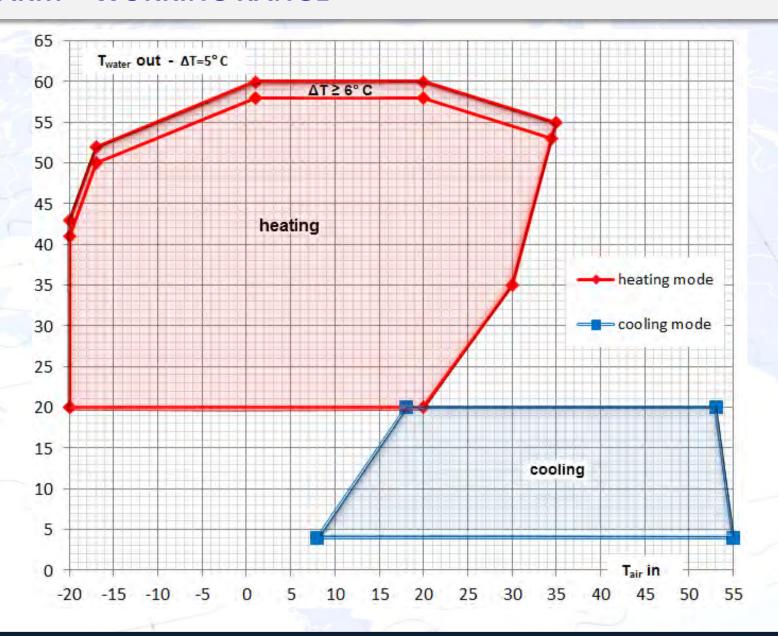
MULTIFUNCTION HP with TOTAL HEAT RECOVERY: HI WARM


Scroll or Twin-Rotary compressors






Scroll



HI WARM: PERFORMANCES

		Water 30°C-35°C							
		HiWarm 12	HiWarm 22	HiWarm 33					
Heatpump: air @ -10		110 Hz	120 Hz	120 Hz					
Heating capacity	[kW]	7,89	15,75	25,46					
Compressor absorbed power	[kW]	2,30	4,87	8,08					
Fans absorbed power	[kW]	0,3	0,5	0,6					
COP (Pf/(Pa+Pv+Pp))	[-]	3,03	2,95	2,93					
Heatpump: air @ -5		110 Hz	120 Hz	120 Hz					
Heating capacity	[kW]	9,14	18,00	27,99					
Compressor absorbed power	[kW]	2,40	5,03	8,12					
Fans absorbed power	[kW]	0,3	0,5	0,6					
COP (Pf/(Pa+Pv+Pp))	[-]	3,39	3,28	3,20					
Heatpump: air @ 0		110 Hz	120 Hz	120 Hz					
Heating capacity	[kW]	10,58	20,59	31,28					
Compressor absorbed power	[kW]	2,46	5,14	8,15					
Fans absorbed power	[kW]	0,3	0,5	0,6					
COP (Pf/(Pa+Pv+Pp))	[-]	3,82	3,67	3,55					

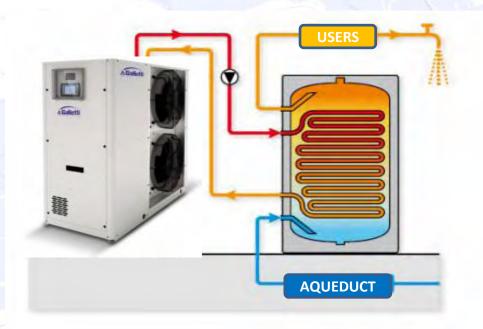
W	ater 40°C-45	°C
HiWarm 12	HiWarm 22	HiWarm 33
110 Hz	120 Hz	120 Hz
7,61	15,41	24,56
2,74	6,04	9,46
0,3	0,5	0,6
2,51	2,37	2,43
110 Hz	120 Hz	120 Hz
8,79	17,48	27,18
2,88	6,19	9,66
0,3	0,5	0,6
2,76	2,63	2,64
110 Hz	120 Hz	120 Hz
10,14	19,88	30,46
3,00	6,32	9,84
0,3	0,5	0,6
3,07	2,93	2,91

HI WARM – WORKING RANGE

DHW production tanks

DHW TANKS: a brief premise

In systems in combination with heat pumps:


- Storage for the production of DHW must always be set up (as it is not «quick exchange» it is necessary to store the required energy)
- Hydraulic separation is required (gas and DHW cannot «coexist» in the same plate exchanger)

STORAGE TANK -> DHW storage

CONSTRUCTION FEATURES:

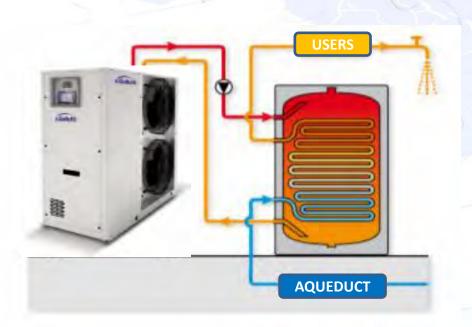
- Glazed, teflon coated, porcelain or stainless steel inside
- Crude steel coil

STORAGE TANK -> DHW storage

Benefits:

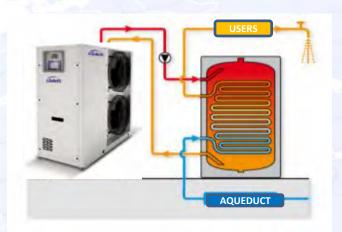
- Contained costs
- Once the entire storage tank is heated up a large volume of DHW is available
- Good stratification also in the withdrawal phase («syringe effect»)

Disadvantages:


- Requires an anti-legionella cycle
- The pump operates with a reduced volume of water-> «Plugging» risk on the coil: if the
 heat pump is not able to transfer the entire power through the coil the technical water
 returns to the unit too hot and the heat pump will stop -> risk of switching on/off too
 frequently
- Reloading times can be long (there is an interposing coil)
- Not the best T approach between technical water and DHW (Delta T approximately 5°C)

THERMAL STORAGE TANK -> technical water storage

CONSTRUCTION FEATURES:


- Crude carbon steel inside
- Stainless steel coil
- DHW is produced instantaneously

THERMAL STORAGE TANK -> technical water storage

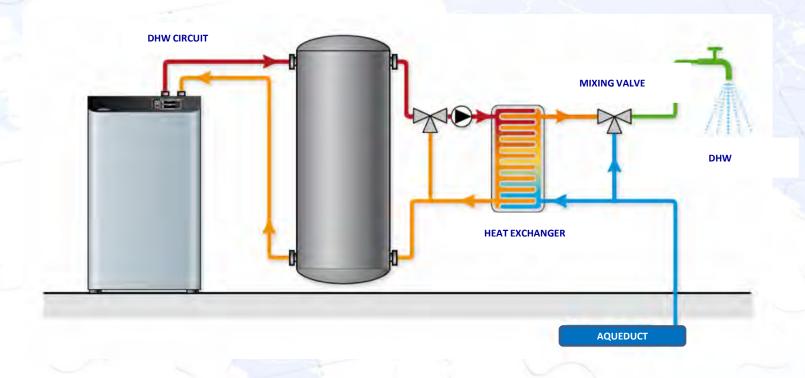
Benefits:

- The heat pump works better (no «plug» effect on the coil)
- No anti-legionella cycle
- Quicker re-loading times (there is no interposing coil in the re-loading phase)

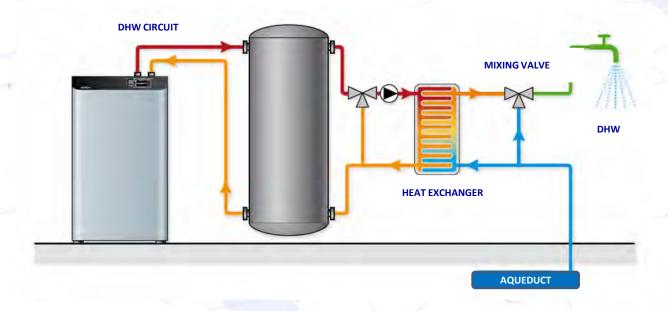
Disadvantages:

- Cost greater than the solution that includes a DHW storage tank (due to the stainless steel coil)
- It requires «large» exchange areas

DHW TANKS: two possible «standard» configurations


When withdrawals are not excessive this is the option Galletti suggests between the standard configurations

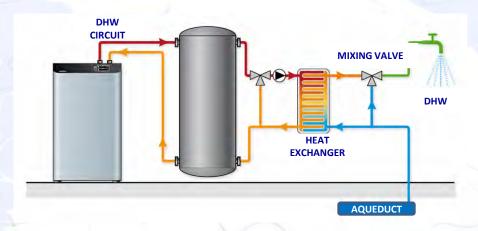
DHW TANKS: an «advanced» configuration


Technical water storage + external heat exchanger

THERMAL STORAGE TANK -> stock of technical water + external heat exchanger

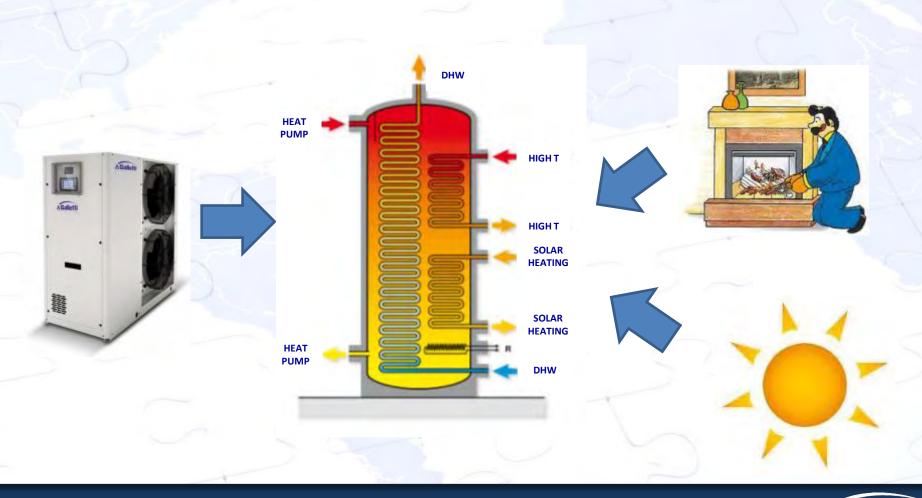
Construction features:

- Crude carbon steel inside
- Plate heat exchanger
- on/off pump + mixing valve or modulating pump
- DHW is produced instantaneously


THERMAL STORAGE TANK -> technical water stock + external heat exchanger

Benefits:

- No anti-legionella cycle
- More efficient heat exchange -> Improved approach on the delta T (2-3 °C)
- The tank is almost completely emptied out («syringe» effect)
- Easy to increase the number of plates
- Easy to maintain


Disadvantages:

- Greater cost (plates + pump)
- Pump absorption

The thermal storage tank according to Galletti approach

The renewable/free energies «container»: heat pump, solar heating, high temperature

THE RANGE OF TANKS GALLETTI by CORDIVARI

Experience with heat pumps

- A range of tanks for DHW production developed ad hoc for heat pumps
- A range of tanks that is currently unparalleled among top manufacturers

RYTN: thermal storage tank without additional coils

CAPACITY	CODE	NET VOLUME	DHW COIL VOLUME	COIL SURFACE	WEIGHT
[1]		[1]	[1]	[m²]	[KG]
300	RYTN 300	302	7,2	3,5	62
600	RYTN 600	525,8	32,2	5,5	95
800	RYTN 800	760	45,5	7,8	120

RYTN SH: thermal storage tank with additional double coil

CAPACITY	CODE	NET VOLUME	DHW COIL VOLUME	DHW COIL SURFACE	LOWER COIL VOLUME	LOWER COIL SURFACE	UPPER COIL VOLUME	UPPER COIL SURFACE	WEIGHT
[1]		[1]	[1]	[m ²]	[I]	[m2]	[1]	[m2]	[KG]
300	RYTNSH 300	288,3	7,2	3,5	7,8	1,2	4,6	0,9	85
600	RYTNSH 600	501,8	32,2	5,5	13	2,0	8	1,25	132
800	RYTNSH 800	728,0	45,5	7,8	16,3	2,5	11,8	1,8	169

RYTN and RYTNSH: withdrawal data

RYTN300 -	P =	0 kW	P =	5 kW	P = 1	0 kW	P = 1	15 kW
RYTNSH300	Q (I/min)	V (I)						
DHW 10C°/45C°,	10	118	10	142	10	166	10	191
starting tank water	20	83	20	91	20	100	20	108
T 55C°	30	48	30	51	30	54	30	57
DHW 10C°/45C°,	10	96	10	116	10	135	10	155
starting tank water	20	67	20	74	20	81	20	88
T 50C°	30	39	30	42	30	44	30	47

RYTN600 –	P =	0 kW	P =	5 kW	P = 1	l0 kW	P = 1	15 kW	P = 2	20 kW	P = 25 kW	
RYTNSH600	Q (I/min)	V (I)										
DHW 10C°/45C°,	10	293	10	353	10	413	10	473	10	533	10	593
starting tank water	20	223	20	246	20	269	20	291	20	314	20	337
T 55C°	30	153	30	163	30	174	30	184	30	195	30	205
DHW 10C°/45C°,	10	240	10	289	10	338	10	387	10	436	10	485
starting tank water	20	182	20	201	20	220	20	238	20	257	20	276
T 50C°	30	125	30	134	30	142	30	151	30	159	30	168

RYTN800 -	P =	0 kW	P = 15 kW		P = 20 kW		P = 2	25 kW	P = 3	30 kW	P = 35 kW	
RYTNSH800	Q (I/min)	V (I)										
DHW 10C°/45C°,	10	469	10	757	10	853	10	949	10	1045	10	1141
starting tank water	20	367	20	480	20	517	20	555	20	592	20	630
T 55C°	30	266	30	320	30	339	30	357	30	375	30	393
	10	384	10	619	10	698	10	777	10	855	10	934
DHW 10C°/45C°, starting tank water	20	300	20	392	20	423	20	454	20	485	20	515
T 50C°	30	218	30	262	30	277	30	292	30	307	30	322

Q = flow rate of domestic hot water withdrawn from the coil in I/min

 $[\]dot{\bf P}=$ power in kW of the connected heat pump under the conditions considered (e.g. outdoor T) ${\bf V}=$ maximum quantity of DHW that can be produced under the specified conditions

RYTP: thermal storage tank with external heat exchanger

CAPACITY	CODE	NET VOLUME	MAX POWER DHW MODULE	WEIGHT
[1]	5	[1]	kW	[KG]
300	RYTPSH 300	286	120*	106
500	RYTPSH 500	505	120*	131
800	RYTPSH 800	803	120*	152

^{*} Max power with reference to a storage T of 80°C. This T is used to calculate the power so as to compare this module with the ones used by Cordivari on the products in the catalogue

RYTP and RYTP SH: WITHDRAWAL DATA

RYTP300 -	P = (0 kW	P = 5 kW		P = 10 kW		P = 15 kW		P = 20 kW		P = 25 kW	
RYTPSH300	Q (I/min)	V (I)										
DHW 10C°/45C°,	10	334	10	420	10	566	10	866	10	1846	10	infinite
starting tank water	20	334	20	372	20	420	20	482	20	566	20	684
T 55C°	26,3	334*	26,3	362*	26,3	396*	26,3	436*	26,3	485*	26,3	547*
DHW 10C°/45C°,	10	264	10	332	10	447	10	684	10	1459	10	infinite
starting tank water	20	264	20	294	20	332	20	381	20	447	20	541
T 50C°	21	264	21	293	21	328	21	373	21	433	21	515

RYTP600 –	P = () kW	P = 15 kW		P = 20 kW		P = 25 kW		P = 30 kW		P = 35 kW	
RYTPSH600	Q (I/min)	V (I)	Q (I/min)	V (I)	Q (I/min)	V (I)						
DHW 10C°/45C°,	10	557	10	1444	10	3078	10	infinite	10	infinite	10	infinite
starting tank water	20	557	20	804	20	943	20	1141	20	1444	20	1966
T 55C°	26,3	557	26,3	727	26,3	809	26,3	912	26,3	1045	26,3	1224
DHW 10C°/45C°,	10	441	10	1143	10	2437	10	infinite	10	infinite	10	infinite
starting tank water	20	441	20	636	20	747	20	904	20	1143	20	1556
T 50C°	21	441	21	623	21	723	21	861	21	1063	21	1389

RYTP800 –	P = (0 kW	P = 15 kW		P = 20 kW		P = 25 kW		P = 30 kW		P = 35 kW	
RYTPSH800	Q (I/min)	V (I)	Q (I/min)	V (I)	Q (I/min)	V (I)						
DHW 10C°/45C°,	10	891	10	2310	10	4924	10	infinite	10	infinite	10	infinite
starting tank water	20	891	20	1286	20	1509	20	1825	20	231	20	3145
T 55C°	26,3	891	26,3	1163	26,3	1294	26,3	1459	26,3	1672	26,3	1958
DHW 10C°/45C°,	10	705	10	1828	10	3896	10	infinite	10	infinite	10	infinite
starting tank water	20	705	20	1018	20	1194	20	1444	20	1828	20	2488
T 50C°	21	705	21	996	21	1156	21	1376	21	1699	21	2221

Q = flow rate of domestic hot water withdrawn from the coil in I/min

 $[\]dot{\mathbf{P}}=$ power in kW of the connected heat pump under the conditions considered (e.g. outdoor T) $\mathbf{V}=$ maximum quantity of DHW that can be produced under the specified conditions

^{* =} DHW outlet temperature 42.6 °C

The path chosen by the Galletti Group...

...is the on-going pursuit for maximum EFFICIENCY

THE BEST SOLUTION:

TECHNICAL WATER STORAGE TANK WITH EXTERNAL HEAT EXCHANGER

THE SOLUTION FOR
STANDARD
APPLICATIONS AT A
PRICE THAT CAN MAKE
THE DIFFERENCE:

TECHNICAL WATER STORAGE TANK
WITH COIL FOR DHW

RENEWABLE ENERGY

Set of binding legislation which aims to ensure the European Union meets its ambitious climate and energy targets for 2020.

- 20% reduction in EU greenhouse gas emissions from 1990 levels;
- Raising the share of EU energy consumption produced from renewable resources to 20%;
- A 20% improvement in the EU's energy efficiency.

20%

DIRECTIVE 2009/28/EC

Promotion of the use of energy from renewable sources

Energy from renewable sources

- Aerothermal energy
- Geotermal energy
- Hydrothermal energy

HEAT PUMP

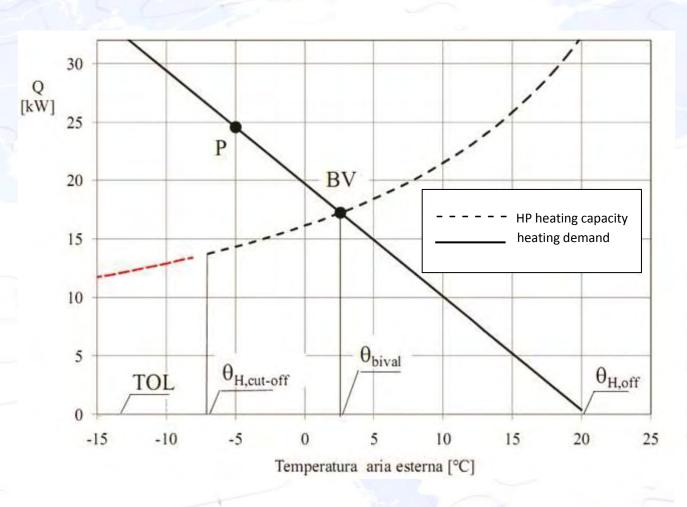
Renewable energy captured by heat pumps

$$E_{RES} = Q_{usable} * [1 - \frac{1}{SPF}]$$
 $SPF > SPF_{lim} = 1,15 * \frac{1}{\eta}$

- Q_{usable} : estimated total usable heat delivered by heat pumps
- SPF: estimated average seasonal performance factor for those heat pumps
- η : is the ratio between total gross production of electricity and the primary energy consumption for electricity production

UNI EN 14825: Calculation of SCOP for HP

Renewable energy captured by heat pumps


- Colder climate zone: $\theta_{design} = -22\,^{\circ}\text{C}$
- Building heating demand: $P_d = 16,4 \text{ kW}$
- Hiwarm 022
- Boiler backup ($\theta_{air} < TOL$)
- Bivalent Temperature: $\theta_{bival} = -4^{\circ}C$

UNI EN 14825: Calculation of SCOP for HP

Bivalent Temperature

Conclusion

Renewable energy captured by heat pumps

- $E_{RES,h} = 24908 \, kWh$
- $E_{RES,h} = 61\% \cdot E_{heating\ demand}$

Thank you for your attention

